Appendix I

Notes Concerning the Hierarchy Structure For CIM Systems

It can be noted that in all of the installations made to date the chosen mode of implementation of the plant-wide system has been a hierarchy of separate computers.

Hierarchy systems have been favored as the implementation media to-date since they have the following characteristics important to their designers:

- 1. They follow the usual human management structure of the plant (see Table AI-I below).
- 2. They promote the Principle of Autonomy (i.e., responsibility can be delegated as low in the hierarchy as possible).
- 3. They promote the Principle of Locality (i.e., since plant units are usually widely distributed, but also usually comprise relatively self-contained units, distributed control can be readily applied).
- 4. They readily permit the distribution of plantwide computing tasks to a multicomputer system due to the natural layering of control functions in the hierarchy [90,119].

5. The distribution just noted reduces the span of control responsibility of each control computer thus reducing its work load and the tasks of its implementation.

TABLE AI-I

DESIGN OF HIERARCHICAL CONTROL SYSTEMS

- I. ALL CONTROL SYSTEMS REQUIRE MORE THAN ONE LEVEL, I.E., ALL ARE HIERARCHIES TO SOME DEGREE. THE DESIGN QUESTION IS: WHAT AND HOW MANY ARE THE LEVELS AND WHAT ARE THEIR ASSIGNED DUTIES?
- II. ORGANIZATIONS AND COMPUTER AR-CHITECTURES ARE HIERARCHICAL:
 - 1. IN ORDER TO REDUCE THE EXCES-SIVE INFORMATION LOADS WHICH IMPEDE THE DECISION MAKING PROCESS IN FLATTER ORGANIZA-TIONS.

continued

Table Al-I continued

- 2. TO KEEP THE SPAN OF CONTROL WITHIN HUMAN DECISION MAKING CAPABILITIES.
- III. A FLATTER ORGANIZATION OR AR-CHITECTURE IS FAVORED BECAUSE IT:
 - REDUCES THE "HUMAN" COM-MUNICATION ERROR (NOT COM-MUNICATING, MISUNDERSTANDING, FALSE INFORMATION).
 - 2. SHORTENS THE RESPONSE TIME OF THE MANAGEMENT SYSTEM.
- IV. WITH THE CIM ENVIRONMENT THE CAPABILITY OF RAPIDLY AND ACCURATELY TRANSFERRING DATA TO ALL FUNCTIONS FOR DECISION MAKING REDUCES THE NEED FOR EXCESSIVE SUPERVISORY LAYERS. IT DOES THIS BY:
 - 1. PROVIDING TIMELY AND ACCURATE DATA AT CRITICAL LOCATIONS.
 - 2. SOLVING DECISION LOGIC PROBLEMS, SUCH AS SCHEDULING PRODUCTION, EQUIPMENT DOWNTIME, ETC., THAT DO NOT NEED THE SUPER CAPABILITIES OF THE HUMAN BRAIN.
 - 3. REDUCING RESPONSE TIME FOR LAN AND WAN CAPABILITIES. (LOCAL AND WIDE AREA NETWORKS.)
 - 4. ELIMINATING HUMAN COMMUNICA-TION PROBLEMS (NOT COM-MUNICATING, MISUNDERSTANDING OR FALSE INFORMATION).
 - 5. MANIPULATING AND CONTROLLING VOLUMINOUS AMOUNTS OF DATA

FORMERLY CONTROLLED BY INDIVIDUALS.

- V. THERE ARE SEVERAL FACTORS WHICH TEND TO INCREASE THE NUMBER OF LEVELS IN THE HIERARCHICAL STRUCTURE FOR THE CIM INFORMATION MANAGEMENT AND AUTOMATION CONFIGURATION. THESE ARE:
 - 1. MODULARITY:
 - A. SCOPE
 - B. LOCALITY (PRINCIPLE OF LOCALITY)
 - 2. THE NEED TO LIMIT THE COM-PLEXITY OF INDIVIDUAL ENTITIES TO FACILITATE HUMAN COMPREHEN-SION AND COMPUTATIONAL TRAC-TABILITY.
 - PRINCIPLE OF AUTONOMY FOR THE APPLICATION FUNCTIONAL ENTITIES.
 - 4. FLEXIBILITY TO PROMOTE THE INTRODUCTION OF NEW TECHNOLOGIES.
 - 5. PHYSICAL LIMITATIONS OF FAN-IN AND FAN-OUT
 - A. PROCESSING CAPACITY
 - **B. RESPONSE TIME**
- 6. HIGHER HIERARCHICAL FUNCTIONS TEND TO FOCUS ON PLANNING (I.E., SCHEDULING), LOWER LEVELS ON EXECUTION.