6

Software Requirements for

Computer Integrated

Manufacturing Including Computer
Aided Software Engineering

ESSENTIAL ASPECTS OF SOFTWARE

DEVELOPMENT [48]

THE INGREDIENTS OF A SUCCESSFUL
SOFTWARE PROJECT

The following list comprises some of the impor-
tant aspects of software development, which have
to be considered if a project is to be successful:

1. Technology
A. The Design
1) Adequacy
2) Modularity

3) Adaptability

B. The Software Development Environ-

ment
1) Specification Tools

2) Programming Languages

3) Test and Verification

4) Documentation

. Support Hardware

1) Development Machines

2) Special Test Environment

2. Management

A. Organization

1) Project Phases

2) Planning

3) Cost Estimation

4) Teams and Structures

5) Influencing Factors

B. Human Factors

89

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

C. Support Tools
1) Documentation
2) Reporting
3) Checkpoints

It should always be borne in mind that the
technological and the management aspects are of
equal importance. It is also a fact that most of
these topics have been individually investigated
and are well known and covered by literature,
courses, etc. But obviously it is not yet common
knowledge that they have to all together form a
“management system” and that in general they
are interrelated.

This can be exemplified by the development of the
phase model as given below.

THE PHASE MODEL

The phase model was originally derived from man-
agement considerations. It later turned out to be
a useful framework for the construction and clas-
sification of tools. For some time it was even
considered as technological dogma. However,
people now understand that both aspects (mana-
gerial and technological) are interwoven and
interdependent.

It has recently been confirmed that an overly rigid
phase planning is counterproductive, but that a
reasonably phased structure for a project is neces-
sary and useful. It can be stressed that the usual
phase plan has to be extended by a phase of
thorough planning. The recommended phase
model therefore looks approximately as follows
[67]:

1. Planning and establishment of the man-
agement structure

2. Establishment of quality assurance
mechanisms

3. Definition of the requirements
4. Design specification
5. Design and coding

6. Unit test

7. Integration
8. System test and validation
9. Maintenance
THE IMPORTANCE OF GOOD DESIGN

With good reason the design has been mentioned
first on the list in the previous section. In princi-
ple it should be a matter of self-understanding that
for the development of computer and software
systemns good design is as important as it is for any
other technical product. The best tools and the
most capable manager can not save a project
whose product design is bad or even wrong. Until
now software development has been regarded
mainly as an aspect of the development (or pro-
duction) environment, i.e., programming lan-
guages, specification tools, test and verification,
and, documentation. Such a view would appear
utterly strange to the usual plant engineer. Of
course the engineer also has to think about the
tools with which to produce the design of, for
example, a car but primarily is concerned with
designing a good and affordable car. The produc-
tion facilities are then constructed according to
the requirements of the product and the
company’s financial considerations.

But unfortunately very little is known about what
comprises a really good software design! Besides,
many believe that this problem can not be solved
by software specialists alone. In the first place the
quality of software is determined by the properties
and the requirements of the application. To stay
within the above mentioned example of auto-
mobile design, knowledge about production
methods may help to make a car cheaper, or,
perhaps less prone to rust, but it will certainly not
improve its road-holding or its fuel consumption.
So the manager will have to apply several criteria
against which to check the quality of a design. The
most important ones seem to be those listed
below.

In the first place the design has to be adequate to
the problem. It must be neither too futuristic nor
overly conservative. One must not take unneces-
sary development risks by trying an unknown
problem solution on, for example, a new genera-
tion of computer. But one must also avoid “obso-
lescence on delivery”.

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

Then a design must be modular. This is important
for technical reasons as well as for organizational
ones. From a technical point of view it is well
known that a modular system is easier to design,
to understand and to maintain than a monolithic
one. Under managerial aspects it is necessary to
prepare for the necessity to develop a system using
ateam, i.e., tobe able to assign well separated work
modules to different people or different sub-
groups.

Finally a design has to be adaptable to change. This
does not only relate to changes “after delivery”,
which Parnas may have had in mind when he
postulated his “Design for Change”, but also with
changes which will, inevitably, occur even in the
development phase. This is inevitable because
software projects usually take much longer than
everyone expects. Everybody talks about an “in-
novation rate” which is supposed to be between
2-3 years, but statistics teach us that the average
software project of nontrivial size takes between
5-8 years! To appreciate this consider that the
average lifetime of a government is usually about
four years. Thus one may well face drastic changes
of the social or political environment in the mid-
dle of the development phase.

ORGANIZATIONAL ASPECTS

PLANNING

Everybody agrees that planning is necessary, and
in every project it is done at least to some degree.
But some mistakes are quite common.

Firstly, planning is obviously not taken seriously
enough. This observation has already been de-
scribed in the book, The Mythical Man-Month, by
F. Brooks [36]. Brooks describes how project teams
are usually built up too fast and that planning is
regarded as a kind of “side-activity” for the man-
ager during the early project phases. Instead the
bulk of the manager’s time is consumed in in-
structing all the new people and in assigning work
packages to them. Consequently these assign-
ments are only partially thought out and are often
incoherent because their planning has not been
completed. From this an important rule can be
derived: Do not start a software project of non-trivial
size with a fully staffed team, but allow for a plan-
ning phase, in which a few - but very good - people

prepare the project by thorough planning and architec-
tural design!

Secondly, planning tools are not used properly.
They are either not used at all or to the contrary -
adhered to too strictly. This, in turn, leads to
inevitable frustrations and to abandoning them
after some time. It is generally agreed that it is
better to use planning tools than to work without
them, but that they should only be loosely con-
nected to the project and used as “guidelines” and
“early warning systems”. So, for example, PERT-
diagrams are not rated very highly, because they
require too much detail and are difficult to adapt.
Bar-charts or Gantt charts are, on the other hand,
generally regarded as very helpful.

COST ESTIMATION
Productivity and Cost Models

This is generally regarded as one of the most
important issues in the management of software
projects. In the USA it has been discussed in
conferences for many years and there is a consid-
erable body of literature dealing with this subject.
A number of “cost-models” have been developed
which try to take into account as many influenc-
ing factors as reasonably possible. Therefore many
of these have sometimes become quite complex.
Despite the effort expended none of them has
succeeded in really giving precise and reliable fore-
casts.

A “rule-of-thumb” can be developed from a com-
parison of these cost-models. This is, “estimate
the possible size of the code in your project and
divide it by the productivity of our team”. This
yields almost exactly the mean value of the fore-
casts given by a number of more or less compli-
cated cost-models. The rule-of-thumb performs
even better if one applies the usual statistical error
boundaries to the estimates of code size. Of course
it is common knowledge by now that a linear
relationship does not hold between code size and
project cost for very large software projects, but the
cost models did not do any better there.

This difficulty can be overcome by a modular
design with loosely coupled components. The
explanation for this can be found in the work of
Halstead [59], who had discovered that the effort
- which is expressed by cost - for the development
of a plece of software is not a linear function of the

21

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

size of the software, but grows according to some
exponential relation. The reason for this is that
the true cause for the necessary effort is the in-
ternal complexity of the software, which also
grows exponentially with the project size. Hal-
stead also showed that modularization can drasti-
cally reduce the necessary effort, because the total
effort necessary for some large software systems
can now be computed as the sum of the effort
necessary for all the modules considered together
instead of the exponential result one would obtain
from applying his formulas to the whole piece of
software as a single entity.

Another important principle, which was first de-
scribed in great detail by Brooks [36], but which is
forgotten every time a project becomes critical, is:
“Adding manpower to a late project makes it later”, or
more generally: There is an optimal team size
which must not be exceeded if the project is to be
completed in a reasonable time. The reason for
this is that humans, who work together in a team,
have to communicate in order to get the common
work properly done. This communication takes
time and this use of time decreases the “produc-
tivity” (e.g., measured in lines of code per man-
year). But as it is clearly impossible to realize a 100
man-year project by one person who is allowed to
work 100 years, one has to allow for these “com-
munication losses”. But one also has to know that
they exist and thus organize the team in such a
way that they do not exceed a tolerable amount of
the total time budget. Modern cost models obvi-
ously take this into account, as Figure 6-1 shows.
This figure is taken from [67] and has been com-
puted using the SLIM model {91].

An important aspect of this figure is described by
M. Key [67] as follows: “It also shows an Impossi-
ble Region. Faced with this evidence it is more
difficult for the senior manager to say: ‘Well, if
you can'’t do it, I will find someone who can
Clearly, management must attempt to achieve a
required completion date as determined by a mar-
ket window; what it must not do is go into the
‘impossible’ region of the graph in an attempt to
do this! Therefore, the plans must be realistic in their
time scales and have a degree of flexibility which can
accommodate slip.”

But Figure 6-1 also shows another, very important,
aspect. From the manpower curves one can see
how to do the same work with much less effort just
by allowing for a little more time! For example, as
shown in Figure 6-1, one can produce 250 K of
software using 25 man-years or 100 man-years. In
the latter case one has even slipped slightly into
the impossible region, i.e., it will be a very difficult
project. The resulting saving of time is shown to
be less that 30%, whereas from a naive point of
view one would have expected 75%. This obser-
vation is confirmed by Figure 6-2, which has been
taken from a study by IBM [88].

If in Figure 6-2 one locates the team sizes which
result from the above figures, i.e., from either
approximately 6, or 33 people, on the curve for
FORTRAN (empty circles), and looks at the result-
ing values for productivity and project duration,
the values of Figure 6-1 are confirmed: the pro-
ductivity of an individual in a team of 6 is four
times that of the same onein a team of 33, and the
gain in project time is approximately 30%. Thus
one obviously has detected a rather solid “law of
nature”. This law was also first described by
Brooks, who also found an explanation for it: Itis
the time for communication between people
which is necessary in a team! He also gave a
formula describing this effect in quantitative
terms. This formula and some of its results are
plotted in Figure 6-3, which illustrates in a dra-
matic way one of the central problems of the
management of programming teams.

Even with the modest amount of 1% of time for
one team member to be talking to another one,
the optimal team size is as small as 6 - 8! Even with
this team size there are between 15 - 28 “commu-
nications” per person per week. This consumes
from 6 to approximately 11 hours per week of each
person’s time. Brooks concludes that, as you can
neither forbid communication completely nor
have every project team conducted by just one
person, one has to organize communication. He
describes several methods for this purpose in his
book [36]. Of course a general caution should be
applied in this case as well as in every other one:
Do not try to adapt other people’s methods or experi-
ence to your problems without reflection and proper
adaptation!

92

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

DEV TIME (YEARS)

CISRSIIIIIER
o":’:“::“‘ ‘ IMPOSSIBLE REGION’
Sz

KLOC — THOUSAND LINES OF CODE

4 l
0 1 — 1 1 1 1 1 1 1
0 100 200 | 300 400 500 600 700 800 %00 1000
EXAMPLE SYSTEM SIZE (KLOC)

Figure 6-1 Slim—diagram [67].

1
® FORTRAN

2 /
® ® PL/I

F 1

/ Y /
EXAMPLE
~6 / / 2
4
TEAM SIZE

300 8 ¢
/ :
16 @
®.5
EXAMPLE /
N
[)

32

PRODUCTIVITY {LOC/MM)
8
T

®32 LENGTH OF PROGRAM
= 20,000 LINES
{FORTRAN)
640g ¢,
30 -
128 @128
| i 1 A
3 10 30 100

DURATION OF PROJECT (MONTHS)

Figure 6-2 Dependence of productlivity on team size (adapted from [88)]).

93

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

T

K = 4% (= 96 MIN/WEEK)

T

D —
1

t x
05 x
- x x
O\x_x/ K = 1% { = 24 MIN/WEEK)
b~ \ A
(o] [H—"
\A—A—A—A—A——A’
— O\O
e o PR
L O-O—O—o o
ot K =0
1 1 1 1 | 1 1 | 1 | 1 1
2 6 10 12
TEAM SIZE ————»
Brook s Formula nZ-n

T

]

Number of Team Members

N Number of Unorganmized Communications Channels Within
Team

Normahzed Duration of a Project

K Percentage of Communication

Figure 6-3 Dependence of profect duration on team size.

1000 000 |-
-
-
d
o 100000 |-
N
G —
i =
(&) p
w
=) e
o
[+4
58
bt =
'
10000 -
8k
6
5 e
4 * LOC/MY
P =
1000 1 1 [] 1 L1 {
1 2 5 8 10 2 5 8 100 2
MY (EFFORT SPENT)

Figure 6-4 Productlivity values collected at first IFAC Workshop on SW-Profect-Management,

94

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

But even if one has thoroughly understood the
problems connected with the management of siz-
able teams and on top of this is a gifted “leader”
who really can get people to work, the problem of
arellable original estimate of the costs of a project
remains. Obviously really reliable data on pro-
grammer productivity do not yet exist. The man-
ager normally has to take recourse to their own
experience.

There are possibilities to check this experience for
plausibility and to compare the performance of
one’s own team or company with the outside
world. First, one can browse through the pub-
lished literature for figures, one can talk to col-
leagues and one can calculate backwards from
competitor’s prices and/or project durations. But
there is also compiled material available: Nearly
everything which Barry Boehm publishes (e.g.,
[32,33]) contains valuable figures and reference
information. A less widely known but extremely
valuable book has turned out to be a really in-
valuable source of raw data. This is Montgomery
Phister’s Data Processing, Technology and Economics
[88]. This book contains innumerable statistics,
collected over a period of approximately 15 years
and covers all aspects of data processing from
computer production to program development.
In addition it is updated at regular intervals.

Figure 6-4 is a plot of productivity figures col-
lected by means of a questionnaire during the
Heidelberg workshop on software engineering
[48].

The bandwidth of the results corresponds very
well with values obtained from other sources:

2500 - 3500 LOC/MY Workshop average

1986

4000 LOC/MY Author’s own experi-
ence, difficult FORTRAN code,
1984

2000 LOC/MY Author's own experi-
ence, difficult Assembler code,
1982

3200 LOC/MY [111], 1977

(A later, more thorough evaluation of the work-
shop results showed a wider distribution: 2700
900 LOC/MY) (LOC/MY - Lines of code per man
year).

Influencing Factors

The above figures cannot be applied uncritically
and universally. One also has to take into account
the most important factors which influence the
productivity of program designers. The most com-
plete collection and evaluation of such factors can
also be found in [111]. There 30 influencing fac-
tors have been listed and their effect evaluated.
Those with the highest values have been listed
below:

1. Complexity of customer interface
4.0/1.0

2, Experience with programming language
1.0/3.2

3. General qualification of personnel
1.0/3.2

4, Experience with application
1.0/2.8

S. Designer participation in specification
1.0/2.6

6. User participation in requ. def.
2.4/1.0(H

7. Experience with computer used
1.0/2.1

8. Complexity of application algorithm
2.1/1.0

9. Percentage of delivered code
1.0/2.1/1.7 ()

10. Limitations of working memory
2.1/1.0

Some other factors, which usually enjoy a high
favor among theorists, are of less influence than
expected:

95

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

29 Complexity of
control flow

1.4/1.0(Y)

30 Module size 1.25/1.0/1.35

The figures are an indication of productivity and
are to be read as follows: The first figure holds if
the respective factor is smaller than normal, the
last one, if it Is greater than normal. The middle
figure (if given) describes productivity under nor-
mal considerations. Thus very complex relations
with a customer, i.e., something which depends
on a talent for negotiations and on the quality of
the contracting department, can decrease produc-
tivity to a quarter of a good value! On the other
hand, if one can assemble a team of qualified
people who are familiar with the application and
with the programming language (factors 2, 3 and
4), one theoretically has a chance to complete a
given project 25 times as fast as under adverse
conditions. The purely technological factors, i.e.,
Factors 29 and 30 are of remarkably small influ-
ence. The effect of Factors 6, 9 and 29 is counter
Intuitive, i.e., experience and statistics show differ-
ent results from what has always been expected
from theoretical discussions.

In general this list easily explains why the reported
productivity figures of programmers can vary by a
factor of 20! And for a manager, who wants to do

reliable planning, this means: Observe your team,
keep your own statistics, monitor your influencing
factors and apply a reasonable safety margin in your
estimates!

D. Martin [78] also described and evaluated the
influencing factors which had been relevant to his
projects. Though he did this only qualitatively,
the results have confirmed the values given in the
above list.

Distribution of Effort Over Project Duration

As already mentioned above, one should never
start a sizable project with a fully staffed team. But
what, then, is a reasonable distribution of man-
power over the duration of a project?

One curve actually observed in a successful project
is shown in Figure 6-5 which is taken from [78]. It
shows that a successful Project of over 100 man-
years has actually been prepared by two people
over one year! Amore qualitative approach is used
in Figure 6-6. This diagram, however, illustrates
the reasons for such a curve by indicating the order
and the overlapping of activities in a software
project. Less detailed, but supported by good sta-
tistics, are the values given in [88]:

MANPOWER PROJECT A

20| START SOFTWARE
DEVELOPMENT

O

DR
NN

10 /

NUMBER OF PERSONS

7.

END SOFTWARE
DEVELOPMENT

7

N

O

%

N

TOTAL EFFORT = 131 MAN YEARS /
SOFTWARE DEV = 114 MAN YEARS /

%

NI 7
/////

N\

%

1 2

//(AV//WWM
|+———BASIS FOR PROGRAMMING MANPOWER ——-|

YEARS

7 8 9 10

Figure 6-5 Distribution of manpower against time for a successful project [78].

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

SPECIFI-
CATION

NUMBER OF PEOPLE

ANALYSIS

PROGRAM

REQUIREMENTS ,\
VERIFICATION —

CONSTRUCTION

USER DOCUMENTATION

SN

I

1 L T

TIME

T T

Figure 6-6 Distribution of manpower over project phases [67].

Program design: 26 (% of total project effort)

Coding: 24

Testing: 36

Documentation: 14
However, two aspects should be emphasized here:

Firstly, it is important to know about the average
values of such distributions, because one needs
them for reliable estimates. The reasons for this
are that reliable productivity figures can usually be
obtained only for certain phases of the develop-
ment cycle. One therefore has to extrapolate the
total project costs from known figures for certain
phases by using the statistical values for the other
phases given in such distribution curves.

Secondly, the usual curves illustrate the mainte-
nance problem. In whatever statistics one con-
sults, maintenance costs usually amount to 50%
of the total life cycle cost of the software. So, one
has to be prepared to set aside a group of 10 people
for the maintenance of a software system which
cost 100 man-years to develop! Of course this
situation is by no means acceptable and therefore
every effort should be made to reduce the mainte-
nance costs of the software by the use of better
design method and good programming tools.

HUMAN FACTORS
General
Thisis one of the most important points a manager

has to observe. All the planning and statistics will
be utterly in vain if the manager does not succeed

in keeping the team together and in maintaining
areasonable degree of job satisfaction and produc-
tivity.

There are many factors which influence this. The
most important of these will be explained in the
following paragraphs.

Motivation of the Team

To achieve motivation, the following factors were
judged to be most important:

1. The team has to have a fair chance of success.
That means that plans and schedules have to
be feasible and realistic.

2. The individual team member has to have a
feeling of importance. Never let the feeling
arise that they are just regarded as a cogwheel
which can be thrown away and replaced at
any time.

3. The manager has to show an adequate re-
sponse to the needs of the team. This means
in the first place a proper working environ-
ment, but also includes the necessity to be
able and willing to help people with their
private problems as far as reasonably possi-
ble.

4. Always maintain a slight overload. This aspect
was first emphasized by the Japanese, where
it is generally accepted that people perform
better and feel more satisfied if the manager
makes them achieve a little more than they
originally expected by themselves.

97

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

Team Bullding

1. The manager should perform a thorough in-
terest analysis of the (future) team-members.
In a profession like program development,
which mainly depends on ideas and organi-
zation of thoughts, the performance of an
individual obviously can vary by a factor of
10 - 20, depending on whether they are em-
ployed in the right place or not. And thus
job satisfaction becomes an economically
much more relevant factor than in many
other more “traditional” professions.

2. Professional ethics and morality are more
important than usually. Because complete
testing and traditional quality control are not
very well developed as far as software is con-
cerned and even simply impossible in big
systems, the commitment of the individual
to do the very best job they can do, becomes
an extremely important economic factor.
This simply follows from the fact that a thor-
oughly developed program costs less in
maintenance and in the damages caused by
malfunctioning.

3. Onthe other hand, the manager has to main-
tain the visibility of the work of the team
members in order to be able to properly per-
form control functions and to start corrective
actions In time,

Dealing with Conflicts

1. Firstly, identify and solve conflicts soon. This
would seem to be an old and well-known rule
for team-leaders. But software people and
managers generally have a predominantly
technical background with little training in
management and human factors, and there-
fore traditional rules of leadership are not
very well known to them.

2. Secondly, be prepared to create pain. Technical
conflicts can very rarely be resolved by a
compromise and somebody has to lose.

/

3. But, also do not try to avold conflicts at any
price. Conflicts are good for evolution (this has
long been discovered by philosophers) and,
if handled properly, may even help those
who lose one. They may win the next time.

Keeping Balance

One of the findings of human factors studies is
illustrated in Figure 6-7. The manager has to be
aware that humans are controlled by a field of
tension in which they try to maintain a kind of
equilibrium. It should be an interesting exercise
for the reader to interpret this diagram for himself.

Another interesting observation is illustrated by
Figure 6-8. There seems to be a correlation be-
tween the skill-level of team members and the
number of meetings held. The consequences of
this observation are not clear, because on the one
hand meetings are good for communication, prob-
lem solving and conflict resolution, but on the
other hand too much communication degrades
productivity, as described in a previous section.

Special Properties of Software Teams

For decades a discussion has been going on among
software professionals as to whether program de-
velopment is a production activity like any other
or whether it is something special to which tradi-
tional rules of management do not apply. How-
ever, it would seem that program development {s
truly comparable to traditional planning activities
and that therefore software managers can learn a
lot from other managers such as architects who
plan large buildings, or from administration in
civil service, railroads or military logistics.

One particular aspect of this problem can be stated
as follows:

The majority of software professionals hold uni-
versity degrees, although most are not in the field
of software. This means that they have been edu-
cated into a tradition where they are judged for
obtaining unique results. Usually university grad-
uates also have never learned the necessity of the
use of strict rules. Both backgrounds make it diffi-
cult to build sizable teams out of such people.

Of course the repetitive, deterministic part has
always been much smaller In software projects
than in more traditional construction projects.
However to aid this situation in the future more
emphasis should be given to the establishment of
educational programs for a medium level of soft-
ware people who are more trained in the direction
of repetitive skills and the solution of small scale
problems than their predecessors.

98

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

BOREDOM

FEAR

SAFETY

CURIOSITY

Figure 6-7 The psychological equilibrium.

MEETINGS

SKILL ————

Figure 6-8 Dependence of number of meetings on skill level.

TECHNOLOGICAL ASPECTS

SELECTION OF SUPPORT TOOLS AND
PROGRAMMING LANGUAGES

The following list comprises an incomplete list
of the tools and languages which have been men-
tioned as having been successfully used. Inten-
tionally it does not imply any order or ranking
except an alphabetic one:

Ada,Ape, APL, AT-Xenix, BIGAM, BOIE, C,
CA-DOS, CMS, COBOL, Codasyl, COMPASS,
CORE, Dataflow-Diagrams, Debugging, Tools,
DOS, EPOS, EXEC, FORTRAN, GMM, GESAL,
ISP, JSD, LISP, MASCOT, MODULA2, Module-
Management-System, Nassi-Shneiderman,
PDL, PEARL, PET-MAESTRO, Petri-Nets, Pretty-
Printer, Prolog, RCS, RMX86, RSX, RTE 1V,
SADT, SINET, SPA-DES, Structured Program-
ming, Test Batch, Test Manager, TURBO-PAS-
CAL, UNIPLEX, UNIX-Tools, VMS, Word
Processors, X-tools, XEDIT, etc.

The overall list was compiled from a question-
naire distributed at a recent workshop [48] In
which the participants were asked to mention all
the tools and languages with which they had had
experience and to indicate whether they had
found them useful, neutral or counter-productive.

The evaluation of these questionnaires showed
some interesting results.

1. 83 methods, tools or languages were men-
tioned, but only PASCAL, FORTRAN, UNIX,
VMS, Structured Programming and Symbolic
debuggers were listed more than twice in a
positive sense.

2. 14 of them were criticized as counter produc-
tive and nine as having had no effect.

This means that it obviously does not matter very
much which method or tool is used (if it is not too
bad) as long as it is used professionally and in a
consequent fashion. This view has been con-
firmed by several other studies.

It is more important for the success of a project
that the team has experience with the support
software, that it is readily available, stable and not
too complicated to use. A major view of this,
which has been formulated in [23] states: The use
of the tool should not require a higher intellectual effort
than the solution of the problem at hand.

It is also important to develop criteria by which
software methods, tools and languages can be
classified and judged with respect to their useful-
ness for any given project. Two first attempts in

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

HIGH

(EG FIRE CONTROL, SECURITY KERNELS)

FORMAL
(SPECIAL, AFFIRM)

STABILITY FORMATTED
OF REQUIREMENTS (PSL/PSA, SREM
SADT, POL)

{E G MODELS)
INFORMAL
(CIMS)

Low HIGH
NECESSARY DEGREE _______
OF CORRECTNESS

Figure 6-9 Reglons of applicability of design tools [48].

Figure 6-10 "Problem Coverage” by various programming languages [48].

100

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

ness for any given project. Two first attempts in
this direction are illustrated by Figure 6-9 and
Figure 6-10.

Figure 6-9 is adapted from [48] and shows regions
of applicability for formal, formatted and informal
software specification methods and tools.

The idea behind the scheme of Figure 6-10 is that
programming languages can be regarded as for-
malized collections of those programming con-
cepts which were well understood and therefore
ripe for formalization at the time of the develop-
ment of the respective language [48]. This view
can be used by a software manager for the techni-
cal selection of the best programming language in
the following way: identify the most important
concepts in the application area of the project and
select the language accordingly.

But in general it turns out that criteria such as the
quality and stability of the compiler are economi-
cally much more important than many others for
the usefulness of a particular language in a project.
M. Key in [67] shows that in one particular project
the forced use of an unproven language had
caused an unnecessary expenditure of 200 man-
years.

TEST TOOLS

The importance of test tools is in general grossly
underestimated. On the one side there are not
many useful tools for that purpose, on the other
hand their use is almost never consciously
planned. Both facts may of course be mutually

interdependent. But the situation is so serious
that it is necessary to break up this "vicious circle".

Figure 6-11, which is taken from [88], illustrates
the reason: Experience shows that in most
projects the detection of program bugs, i.e., the
test coverage, follows the right curve. The ex-
planation for this is obviously that people start out
with a too optimistic view of the program error, or
bug, rate in their program and test too lightly.
Then, after major problems develop, they start
testingin earnest and arrive at a program with 90%
of the bugs out at "T90-real". If one would apply
systematic testing from the beginning, one would
obviously achieve a stable product much earlier
("T90-optimal") and thus save a lot of money.

The seriousness of the situation is further il-
lustrated by the statistical evidence, that there are
between 3 and 20 programming errors per 1000
lines of code before testing. Halstead [59] explains
this by stating that there is a certain mental error
rate which is different for each individual, but is
rather constant for any one over time.

Of course it does not help much to state the
seriousness of a problem if there is no solution for
it. But in the case of testing there are promising
methods and tools which are just not used widely
enough. The available methods and tools can be
roughly classified into informal and formal
methods.

The informa/l test methods comprise:
1) Intuitive testing

2) Inspections

TEST COVERAGE

T

80
OPTIMAL

Too TEST TIME

Figure 6-11 Test coverage over time.

101

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

3) “Walk throughs”

4) Test plans

5) Program controlled testing
6) Limit testing

7) Special test environments

The formal test methods comprise mainly what is
other-wise known as program verification:

1) Analytic/logic verification ("program
proofs")

2) Program-flow oriented verification
3) Data-flow oriented verification

For a number of languages there exist verification
tools, for example, for:

FORTRAN: ATTEST, DAVE, DISSECT, FACES,
FAST, PET, RXVP, SADAT, SQLAB

PASCAL.: RXVP, SQLAB

JOVIAL: JAVS, RXVP

PEARL: PEARL-Analyzer

But one warning should also be given here: If used
uncritically, many of these methods result in the
production of enormous quantities of paper which
In turn are very difficult to evaluate. Thus, a
programming team should gain experience with
them in pilot studies before using them in a full-
sized project.

DEVELOPMENT SUPPORT HARDWARE

This is another problem area which is often not
dealt with in relation to its true importance. Suf-
ficient development support hardware is an im-
portant productivity factor and one usually needs
more than is available. But it is important for the
manager to know this in advance and to plan for
the necessary funds in order to provide it at the
right time. Figure 6-12 shows a typical curve for
the support hardware needed during a major proj-
ect. It has been taken from [67].

FUTURE TRENDS

It was generally agreed that the technological
situation in the field of software development had
improved over the past ten years and that at pres-
ent there are enough tools available. The main
problem today is how to use them properly. But
the coverage of the software development cycle by
tools is still very inhomogeneous and in some
areas further developments are necessary. The
following potential future developments have
been identified as necessary and feasible:

1) “Intelligent” tools

2) “Contents” - or “concept”-oriented
programming

3) Graphic user interface

4) Built-in-simulation

5) Integration of “rapid prototyping”

6) Language independence

7) Machine independence

8) Automatic generation of test data

9) Automatic generation of error handlers
10) Management visibility
11) Generics and macro processors

12) Guidelines for software and system develop-
ment

In order to determine the priorities for these goals,
the participants of the recent workshop [48] were
asked to rank the proposals under two different
boundary conditions:

A) Regardless of cost and only according to their
technical merits and necessity.

B) With major consideration of project cost, i.e.,
if people had to pay for the development
themselves.

This has resulted in the following order of impor-
tance in each case:

102

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

TECHNOLOGY
LOAD & POWER
(1984 " UNITS)

20 -

AVAILABLE
POWER

—_—

r____J
1

T1, T2, T3 TECHNOLOGY UPDATES

SUPPORT HARDWARE

ln

N

(\

| \JTE}
|

|

|

|

o6l 77 1 78 1 79 1 e0o | & | s2 | e | 8a | s |
YEAR =t
Figure 6-12 Use of support hardware over profect time [48].
A) 1. "Intelligent" tools SUMMARY

2. Guidelines
Integration of rapid prototyping

3. Graphic user interface

Machine independence
Management visibility.

B) 1. Graphic user interface
2. Integration of rapid prototyping
3. Guidelines
4. Machine independence

Management visibility
Concept-oriented programming

The current state of the "Art of Software Manage-
ment” can be summarized as follows:

1. Technically there are still problems but there
are enough methods and tools around to
properly support a project.

2. It is necessary to train managers better in
order to enable them to:

a. Properly use all these tools
b. Organize their teams
c. Motivate their people

d. Control their resources

103

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

Management of software projects has to and can
be learned and should not just be based on tech-
nological beliefs.

BLOCK DIAGRAMS OF THE
PROGRAMMING REQUIREMENTS FOR
THE SCHEDULING AND CONTROL
HIERARCHY PROGRAM MODULARITY

As this generalized reference model readily shows,
program modularity is the key to future transpor-
tability and reuse of computer programs in suc-
ceeding integrated production plant computer
control systems. Modules themselves must be or-
ganized into sub-modules such that all possible
commonality between comparable programs is
preserved in the overall structure of the program
and differences are concentrated in replaceable
sub-modules which are specific to the particular
applications involved. That is, program modules
must be made as generic as practicable.

This is obviously not a new thought with the
Committee and in fact is a well-known software
engineering technique. The problem which exists
is one of coordinating the design of these program
modules so that their interfaces with other
modules to which they interconnect are mini-
mized. In addition, the modularized programs
must themselves be written in a language which
has been standardized for the real-time applica-
tions needed here.

AN EXAMPLE MODULAR
PROGRAMMING SYSTEM

The first Figure (6-13) of this Section presents a
diagram of the operations which are executed by
programming in the process computer system.
This diagram shows the overall system as carried
out by a single computer containing all functions.
The following figures show the corresponding dia-
grams for each level of a hierarchy computer sys-
tem in turn. These diagrams correspond to the

EXECUTIVE PROGRAM
TIMING AND PRIORITY INFORMATION
_________ N R e,
r T 1
| | '
{ { |
|
INPUT-INTERFACE PLANT CONTROL CONTROL
MONITORING AND VARIABLE [*=] comPUTATIONS | | CORREC- !
ALARMING, OPERATOR VALUES [l INCLUDING DDC TIONS |
COMMUNICATION e—] DATABASE ALGORITHMS DATABASE I
1
|
—T\ OUTPUT
FROM SENSORS PERTINENT INTERFACE !
PLANT DYNAMIC AND e — —
OPERATOR S INTERFACES 1 MODELS BACKUP |
@ |
g !
g
4 TO ACTUATORS |
i r OPTIMIZATION [
E DATA 7 ROUTINES 4
2 TRANSFER |
Z +— INTERFACE
o |
o
' |
o | PERTINENT PLANT I
o | STEADY-STATE |
l MODELS I
L - J

Figure 6-13 Block diagram of overall process control programming system to show desired modularity.

104

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

figures of the earlier Chapter in showing the duties
carried out at each level and corresponding soft-
ware modification.

Such a modular system allows any particular mod-
ules to be modified without affecting any of the
other modules, thus greatly simplifying both the
initial programming effort and any later required
program modifications. This is made possible by
the use of the database elements indicated in the
diagrams. A further advantage of such a program
is the fact that programs developed by others for
any of the modules can be readily integrated into
the overall program. The chance of finding a
suitable preprogrammed module is obviously

much more likely than the corresponding chance
of finding the complete overall program for any
particular specific application.

It should be noted that most of the differences
between process control programming functions
and engineering or business type programs are
included in Level 1 of the hierarchy system, the
second figure. Thus, the higher-level functions
can probably use many programs developed for
other applications. This probably will not be true
for the needs for programs for the supervisors’ and
managers’ interfaces or for any remaining time-
based functions since these are the functions

EXECUTIVE PROGRAM

TIMING AND PRIORITY INFORMATION

_________ 1 _

r T ,
| I |
t t !
|

INPUT-INTERFACE || PLaNT conTROL CONTROL
MONITORING AND s VARIABLE COMPUTATIONS [, | CoRrec- |
ALARMING, OPERATOR VALUES || INCLUDING DDC TIONS |
COMMUNICATION r.‘_ DATABASE ALGORITHMS DATABASE '
|
» .
FROM SENSORS OUTPUT |

PERTINENT
PLANT DYNAMIC
MODELS*

INTERFACE
AND
BACKUP

v OPERATOR'S INTERFACES ["‘
s
w
=
7]
>
w
[+
w
=
g
2 — DATA .
S TRANSFER
2 «——01I INTERFACE
g
x t
o
g |
>
o 1

|

S,

T

TO ACTUATORS

*NEEDED FOR ADVANCED
CONTROL FUNCTIONS

Figure 6-14 Block diagram of process control programming system to show desired modularity, Level T only.

105

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

which are least likely to be used for the business
and scientific application fields.

While the diagrams of Figures 6-13 to 6-17 have
been drawn for the main line process control,
production control and production management
tasks of the plant, it can readily be seen that the
diagrams would apply equally well to the auxiliary
tasks necessary in plant operation. These are
maintenance management, raw material and en-
ergy control, product inventory control and statis-
tical process control, among others. It can be
readily seen that these functions would need ac-
cess to the appropriate databases, would commu-
nicate both up and down in the hierarchy and

would have the required man/machine interfaces.
They would carry out the necessary task computa-
tions using the associated standard algorithms and
related plant models. Most of these functions
could use the standard process control sensors for
any needed plant data. Thus they would probably
not need any large number of special sensors.

The work involved would generally take place at
levels higher than Level 1, probably at Level 2 or
Level 3. Thus Figures 6-15 and 6-16, appropriately
modified to include the terms common with the
auxiliary tasks mentioned above, would readily
apply to diagram these functions.

EXECUTIVE PROGRAM

TIMING AND PRIORITY INFORMATION

r————~—"—>7™7"—7= R E q
|
{ I |
{ { |
|

DATA TRANSFER OPTIMIZATION
INTERFACE AND L .| UNIT COMPUTATIONS SET !
GO %:TS‘:E. 1 DET‘ﬁLED ™ TPA%TEE I

I
COMMUNICATIONS et I
1
|
PLANT DATA |
DATA
FROM LEVEL 1 TRANSFER | —
SUPERVISOR'S INTERFACES INTERFACE |
|
b I
TO LEVEL 1 |
DATA
TRANSFER I OPTIMIZATION !
~——— INTERFACE |———] ROUTINES e — o — ~
TO UPPER

<—— LEVELS OF THE |
HIERARCHY |
} |
| PERTINENT PLANT |
| STEADY-STATE]
I MODELS |
L e e e e = J

Figure 6-15 Block diagram of optimizing control programming system to show desired modularity, Level 2 only.

106

SOFTWARE REQUIREMENTS FOR COMPUTER INTEGRATED MANUFACTURE

EXECUTIVE PROGRAM

l TIMING AND PRIORITY INFORMATION

r T I
| [|
1 |
DETAILED |

DATA TRANSFER
INTERFACE || AREA [+ SCHEDULING DETAILED |
AND MANAGER S DATA- | | CSE”Q%?JL‘ETS - UNIT '

BASE SCHEDULE
COMMUNICATIONS o SCHEDULE |
|
|
PLANT DATA |
DATA
FROM LEVEL 2 RANGTER b —
MANAGER S INTERFACES INTERFACE I
|
t_ |
DATA TO LEVEL 2 |
TRANSFER [OPTIMIZATION [
—] NTERFACE —0o A ROUTNES | 4
TO UPPER

LEVELS OF THE |
HIERARCHY I
t |
! PERTINENT PLANT |
| STEADY-STATE |
|

| MODELS

Figure 6-16 Block diagram of detailed scheduling programming system to show desired modularity, Level 3 only.

107

A REFERENCE MODEL FOR COMPUTER INTEGRATED MANUFACTURING

EXECUTIVE PROGRAM

TIMING AND PRIORITY INFORMATION

I r-—————7——7= 1
| [|
i i I
OVERALL 1

DATA TRANSFER SCHEDULING
INTERFACE AND PLANT COMPUTATIONS OVERALL I
MANAGER'S DATA- F“ VS SALES ORDERS AREA I

COMMUNICATIONS BASE AND MANAGEMENT SCHEDULE
DECISIONS |
| [
|
PLANT DATA I
FROM LEVEL 3 DATA
TRANSFER | ——
MANAGER S INTERFACES INTERFACE |
|
|
DATA TO LEVEL 3 |
TRANSFER OPTIMIZATION |
——] INTERFACE _4 ROUTINES
TO UPPER - — — — — —— — —
LEVELS OF THE

=1 HIERARCHY l|
} |
! PERTINENT PLANT |
| STEADY STATE |
| MODELS |
- _J

Figure 6-17 Block diagram of overall scheduling programming system to show desired modularity, Level 4 only.

108

